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In this work, a comparison of the performances of different AOPs in the phenol and 4-chlorophenol (4-CP) degradation at lab and
pilot scale is presented. It was found that, in the degradation of phenol, the performance of a coupled electro-oxidation/ozonation
process is superior to that observed by a photo-Fenton process. Phenol removal rate was determined to be 0.83 mg L™ min™" for
the coupled process while the removal rate for photo-Fenton process was only 0.52mg L™" min~'. Regarding 4-CP degradation,
the complete disappearance of the molecule was achieved and the efficiency decreasing order was as follows: coupled electro-
oxidation/ozonation > electro-Fenton-like process > photo-Fenton process > heterogeneous photocatalysis. Total organic carbon
was completely removed by the coupled electro-oxidation/ozonation process. Also, it was found that oxalic acid is the most
recalcitrant by-product and limits the mineralization degree attained by the technologies not applying ozone. In addition, an analysis
on the energy consumption per removed gram of TOC was conducted and it was concluded that the less energy consumption is
achieved by the coupled electro-oxidation/ozonation process.

1. Introduction

Water detoxification is an important issue that demands
the immediate development and implementation of effective
technologies able to abate pollutants in industrial wastewater.
While no strict regulation about industrial wastewater could
be applied to reduce the amounts of dangerous chemicals
incorporated into water, the alternative is to follow the
remedial route for degradation of pollutants and research
needs to be done in this sense [1-3]. Among the numerous
pollutant species, phenol and its derivatives deserve special
attention due to its extended use, high toxicity, and its
resistance to complete mineralization. Phenol (C4HO) is
employed as a raw material in the synthesis of innumerable
chemical products as dyes, resins, and pharmaceuticals [4, 5].
One of the main phenol derivatives is 4-CP that is also widely

employed in different industries [6, 7]. Phenolic compounds
exposed to environment without any control can result in its
transformation to more dangerous degradation products. The
conventional wastewater treatment methods (i.e., filtration,
centrifugation, sedimentation, coagulation, and aerobic or
anaerobic processes) do not represent a real option to com-
pletely eliminate toxic aromatic compounds. As alternative,
the advanced oxidation processes (AOPs) have emerged
and received special attention due to the possibility to be
helpful in the transformation of organic compounds into
carbon dioxide and water at moderate operation conditions
by means of potent oxidant agents and low cost and widely
available reagents [8-11]. These processes have been success-
fully applied to water treatment for phenolic compounds
removal and some of them are Fenton [12], photo-Fenton [13],
electro-Fenton [4], electro-Fenton-like [14], anodic oxidation
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for photocatalytic process for 4-CP degradation.

[15], photo-electro-Fenton [1], peroxicoagulation [16], H,O,
electrogenerated [17], photocatalysis [18], and ozonation [19]
processes. Electrochemical oxidation is a promising clean
technology that involves the production of hydroxyl radicals
through anodic/cathodic reactions taking place at the elec-
trodes [9, 11]. Ozonation process is also considered as a potent
and clean technology to mineralize organic matter [20].
Ozone toxicity at the levels employed for organic degradation
processes can be considered as low. A Fenton process involves
the use of H,0O, which also is considered as a nontoxic
reagent due to its decomposition gives inert compounds
as oxygen and water [21]. Metallic reagents (Fe**/Fe’",
Cu**/Cu") are also low cost and wide availability materials to
conduct Fenton and Fenton-like processes [1]. Heterogeneous
photocatalysis involves the activation of chemical reactions
by light and implies the use of semiconductors as catalyst
which normally are prepared from cheap metals [22]. All
the aforementioned processes can be operated under mild
conditions (room temperature and atmospheric pressure)
reducing energy consumption cost and giving priority to
environmental safety. Despite the variety of AOPs, in this
work we focus on the degradation of phenolic compounds
(phenol and 4-chlorophenol) by the following technologies:
coupled electro-oxidation/ozonation, photo-Fenton, photo-
catalysis, and electro-Fenton-like processes performed at lab
and pilot scale. It is worth clarifying that the results presented
here for every treatment were chosen as the best ones in
terms of phenolic compound mineralization from a set of
experiments that have been reported elsewhere [23-26] by
our group. Therefore, this work mainly aims to identify the
most promising technology among the studied ones by com-
paring them in terms of mineralization efficiency and energy
consumption per removed gram of total organic carbon at the
best conditions previously reported for each process.

2. Materials and Methods

2.1. Reagents. Phenol (C4H;OH) was purchased from Merck.
Reagent grade 4-CP (CIC4H,OH) and 4-aminoantipyrine
(C;;H3N;0) were purchased from Sigma-Aldrich. Solu-
tions of phenolic compounds at different concentrations
were prepared with deionized water. Potassium ferrocyanide
(C¢NgFeK;) was obtained from Baker. Hydrotalcite-like
compound (MgAlZn 5%) used as photocatalyst was prepared
according to the procedure described in a previous work [24].
H, O, solution was provided by Fermont (30.2% purity).

2.2. Phenolic Compounds Oxidation

2.2.1. Coupled Electro-Oxidation/Ozonation. Oxidation of
phenolic compounds by a coupled method was conducted in
an upflow bubble column reactor adapted as electrochemical
cell with two BDD (boron doped diamond) electrodes (20 cm
x 2.5cm) working as anode and cathode separated at a
distance of 1 cm. Figure 1 depicts a schematic representation
of the reaction system. Superficial area of electrodes was equal
to 50 cm” and reaction volume was 1L of solution. 0.1 M
Na, SO, was employed as support electrolyte and the initial
concentration of phenol/4-CP to be degraded was 100 ppm.
Ozone was produced in a Pacific Ozone Technology ozone
generator by electric discharge. The ozone concentration in
the gas stream at the inlet of the reactor was determined to
be 5+ 0.05mgL™". Gas was fed at a flowrate of 0.05 L min™"
rate and was continuously supplied to the reactor through
a porous gas-plate diffuser placed at the bottom of the
reactor. In a typical experiment the reactor was operated in
batch mode regarding the liquid phase and it was performed
at room temperature. In the case of phenol degradation
a current density of 60 mA/cm® was applied to the BDD
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electrodes while 30 mA/cm? was the current density applied
when 4-CP degradation was conducted. The applied potential
value in this process was 11.25 V. The results presented here
were obtained with experiments where the pH was initially
adjusted at 7.0 by means of H,SO, and/or NaOH analytical
grade. This pH, in the range of 3 to 12, was found to be the one
maximizing the mineralization of the phenolic compounds.
For the same reason the applied densities were selected.
The whole set of results are to be published elsewhere [26].
Samples were analysed by UV-vis spectroscopy, HPLC, and
TOC.

2.2.2. Photo-Fenton Process. Degradation of phenolic com-
pounds aqueous solutions (C, = 100ppm) was also per-
formed by Photo-Fenton process in a jacketed Pyrex glass
vessel of 0.1 L coupled with a UVP Pen-Ray lamp (A =254 nm)
located at its centre. Dimensions of the reactor were 2.5 cm
internal diameter and 20 cm length. Iron reagent was pro-
vided through pillared iron clays at a catalyst concentration
equal to 0.8 kgm™. Further details about pillared iron clays
preparation and reaction system operation can be consulted
in Martin del Campo et al. [23]. A typical experiment was
performed at room temperature. The initial pH value was
adjusted at 2.8 at all experiments by means of H,SO, addition
since it is well known that photo-Fenton process performs
the best at acidic conditions. A stoichiometric amount of
H,0, was added to the system. A control experiment to
elucidate the interaction of hydrogen peroxide with phenol
and 4-CP was conducted. The change concentration was less
than 2% after 120 min even when an amount of 20 times
the stoichiometric amount of hydrogen peroxide was added
to a 4-CP aqueous solution. After studying the effect of
initial hydrogen peroxide concentration and pillared clay
loading, it was concluded [23] that the highest mineralization
degree was attained when using the stoichiometric amount of
hydrogen peroxide and 0.8 gL ™" of pillared clay. Therefore,
the calculations presented here are those obtained with
the results at such conditions. Samples were periodically
withdrawn and analysed by UV-vis spectroscopy and with the
TOC analyser.

2.2.3. Heterogeneous Photocatalysis. Photooxidation of 4-
CP (C, = 80ppm) was conducted at pilot scale in a
cocurrent downflow bubble column (CDBC) in which 14 L of
a contaminated solution was treated. This reactor was coupled
with a HITECH NNIT 400/147 XL UVC lamp (A = 254 nm)
(Figure 1). A hydrotalcite-like compound (MgZnAl 5%) was
used as photocatalyst at a concentration equal to 1.2kgm™.
According to the fabricant, the intensity of the light emitted
by the employed lamp at a distance of 1 m is 1100 gW cm 2.
Temperature was kept constant during the entire experiment
(298 K). pH was not adjusted at any moment of the experi-
ment and basic conditions were observed at the end of it. In
this case the effect of pH was not studied. Still, it is worth
pointing out that hydrotalcites should not be used under
acidic pH since get diluted. Further details about this device
and its operation are available in Martin del Campo et al. [24].
The reaction was followed by UV-vis spectroscopy and TOC
analysis.

2.2.4. Electro-Fenton-Like Process. This process was con-
ducted in a cylindrical undivided electrochemical cell. Two
pairs of electrodes were employed (the same material was
used for anode and cathode). A pair of them made of graphite
(superficial area: 50 cm”) was adapted for H,O, electrogen-
eration in situ and two copper electrodes (superficial area:
50 cm?) were placed in order to provide, by applying pulses
of current, metallic ions to catalyse the H,O, dissociation
(four 40 mA/cm® current pulses, 5 minutes each, every 30
minutes). Graphite electrodes were continuously energized
with a current density of 4mA/cm?®. The reaction volume
was 0.85L and consisted in a solution of Na,SO, (0.05M)
and 4-CP (C, = 100 ppm). The applied potential value for
this process was 8 V. At all experiments, pH was adjusted
at 3.0 and temperature was kept constant during the entire
experiment (291 K). These conditions were found to provide
the highest mineralization degree in a comprehensive study
previously conducted [25]. In such a report the effect of
several variables on mineralization degree was studied. These
variables were type of H,0, dissociation catalyst (Fe or Cu),
oxygen flowrate, number and length of current pulses applied
to iron or copper electrodes, and current density. Chemical
analysis included both, HPLC and TOC analysis.

2.3. Chemical Analysis. Phenol absorbance measurements
were performed in a Perkin Elmer Lambda 25 UV-vis spec-
trophotometer (A = 510 nm) by the reaction of phenol with
4-aminoantipyrine in the presence of potassium ferricyanide
4-CP concentration which was determined in the same device
but the absorbance was taken at A = 280 nm. Mineralization
of phenol and 4-CP solutions treated by the coupled EO/O;
and EFL was quantified in a Shimadzu TOC-Lqpy device.
The samples from the PF and PC treatments were analysed
in an Apollo Model 9000 TOC Analyser. The main reaction
intermediates were identified and quantified by HPLC in
a Waters 1015 equipment operating in isocratic mode. For
the analysis of carboxylic acids, an Eclipse XDB CI8 col-
umn was employed and the mobile phase (0.6 mLmin™")
was composed of water : acetonitrile : phosphoric acid in an
89.9:10:0.1 ratio. In the case of aromatic by-products, the
chemical analysis required an Ascentis C18 column and a
mobile phase (1mL min™t) composed of methanol : water in
an 80 : 20 ratio acidified by 5 mM of H,SO,. The UV detector
was configured at 210 nm to quantify carboxylic acids and at
280 nm to quantify aromatic compounds.

3. Results and Discussion

3.1. Phenol Degradation. Degradation of phenol was per-
formed by two different AOPs: coupled electro-oxidation/
ozonation process (EO/O;) and photo-Fenton process (PF).
These processes were evaluated after 60 min of treatment. It
was found that the coupled treatment reached 100% of phenol
degradation while by PF it was less efficient with only 36%
of degradation of initial phenol and increased to 67% after
120 min. Furthermore, it is worth noticing that the reaction
volume in the coupled EO/Oj; is about 10 times higher than
that treated by photo-Fenton process.



The superior performance of the coupled process is
expected since the synergetic effect of two coupled AOPs
accelerates the degradation of the model compound. If
the reaction time in photo-Fenton process was extended,
probably the same degradation as that with the coupled
process could be achieved.

The common element in the aforementioned processes
is the oxidation of phenol molecule by means of hydroxyl
radical according to (1)-(2) for EO [27], (3) for ozonation [27],
and (4) for photo-Fenton process [11]. Oxidation through
electrochemical process can follow two routes depending on
the oxidizing agent: by hydroxyl radical produced by anodic
oxidation (see (1)) or by hydrogen peroxide produced by
cathodic reduction (see (2)). In ozonation two degradation
routes can also be distinguished, direct oxidation of organic
compounds due to the electrophilic character of O; and
indirect oxidation by production of hydroxyl radicals (see (3))
although at a pH of 7 no preference for direct or indirect
oxidation has been reported [27]. Finally, in photo-Fenton
process the hydroxyl radical is produced by interaction of
peroxide with light and iron reagent (see (4))

BDD + H,0 — BDD ("OH) + H" + e~ 1)

0, +2H" +2¢” — H,0, ()
20; + H,0 — 2HO" + 20, + HO," (3)
H,0, + Fe’" + hv — Fe’* + HO™ + HO' (4)

After hydrogen peroxide or hydroxyl radical is produced,
this species reacts with phenol molecule oxidizing it towards
intermediates or directly to carbon dioxide and water:

R + Phenol — Intermediates — CO, + H,0

, 5)
R ="0OH or H,0,

Due to the single or multiple possible degradation pathways
for each treatment, differences in the concentration profiles as
well as in the mineralization of the molecule were expected.
This fact was confirmed and Figure 2 depicts normalized
phenol concentration profiles of two representatives study
cases: coupled EO/O; and photo-Fenton processes.

As expected, degradation routes of EO/O; and PF
exhibit important differences. Degradation rate is consider-
ably slower in the latter process which may require excessive
reaction time to achieve competitive results against other
technologies. Phenol degradation rate was determined as
function of the total organic carbon (TOC) decay in the
coupled EO/Q;. Thus, for this system,

~rroc = 1.3501 (mg TOC/Lmin). (6)

The use of the Mineralization Current Efficiency for the
comparison of the performances of electrochemical processes
is widely accepted. In our case and on the basis of total organic
carbon measurements, we also introduce this parameter
according to the equation proposed by Professor Brillas
group [28] which is presented below:

nFV (Initial TOC - Final TOC) .

MCE = -
423 % 107mlt

100, (7)
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cat

where »n is number of consumed electrons, F is Faraday
constant (96487 Cmol ™), V is electrolyte volume (L), TOC is
total organic carbon (mg L™), m is number of carbon atoms
in the phenolic molecule (6), I is current (A), and ¢ is time
(h).

For phenol degradation (C4H4O), n = 28 according to
the following chemical equation:

C¢HyO +280H — 6CO, + 17H,0 +28¢”  (8)

Finally, we calculate the MCE for the coupled EO/O; and
results are presented in Table 1.

As the final step of the phenol degradation study, the by-
products generated in the coupled EO/O; were identified.
It was found that, in the first 10 min of treatment, aromatic
compounds (hydroquinone, benzoquinone, and catechol) are
formed and after 120 min practically they have disappeared by
its degradation to carboxylic acids (oxalic, maleic, succinic,
fumaric, and formic). Table 2 summarizes the identified by-
products as well as its retention times and concentrations
after 10 minutes (aromatic compounds) and 20 minutes
(carboxylic acids) for the EO/O; coupled process.

3.2. 4-CP Degradation. The second phenolic compound to
be degraded by AOPs was 4-CP. This molecule was elected
to assess the performance of heterogeneous photocatalysis
catalysed by MgAlZn 5% hydrotalcite-like compound (PC:
MgAlZn 5%) and photo-Fenton process (PF) and Electro-
Fenton-like process (EFL) in which H,O, is also electro-
generated in situ and coupled electro-oxidation/ozonation
process (EO/Oj;). The response variables for comparison
among the four treatments were molecule degradation fol-
lowed by UV-vis spectroscopy and mineralization degree by
TOC analysis. For the former case the time evolution of 4-CP
is presented in Figure 3 during a 180 min period.

From this concentration profiles comparison, we can
observe important differences among AOPs. The total degra-
dation of the model molecule is reached by both, EFL and
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TaBLE 1: MCE for the phenol degradation by coupled EO/O,
process.

TOC,_, TOC,,,, j MCE
(mg TOC L™ (mg TOC L™ (mA cm ) (%)
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FIGURE 3: Temporal evolution of 4-CP concentration obtained by
the following treatments: PC: MgZnAl 5% (m), PF (O), EFL (a),
and EO/O; (x). Reaction conditions: EFL (j at copper electrodes
= 40mAcm?, j at graphite electrodes = 4mAcm 2, and C, =
100 ppm); PC (C,, = 12kgm™; C, = 80ppm); PF (C, =
0.8kgm™; C, = 100ppm); EO/O; (j = 30mAcm™? C, =
100 ppm).

EO/Oj; treatments, and it can be observed that since 120 min
no signal of 4-CP was detected. By means of PF almost the
total degradation is attained. If we contrast these results with
those obtained for phenol degradation, the Cl” substituent
present in 4-CP molecule appears to favour degradation
process as has been reported by Pera-Titus and coworkers [11].
Photocatalytic process also was successfully applied to 4-CP
degradation although no complete degradation was attained
in 180 min. The perception that no degradation is occurring
in PC process during the first 30 min can be explained
by an electronic effect that modifies the UV absorbance
spectrum and already has been reported in photocatalytic
process as a photoinduced period associated with reactions
that imply free-radicals formation [29]. It is beyond the scope
of this work to explore the effect of variables like catalyst
concentration or light intensity among others but further
details of this process can be consulted in Martin del Campo
et al. [24].

The following chemical reactions (see (9)-(15)) are
intended to explain the different performance obtained by
employing the referred processes in the 4-CP degradation.
Coupled EO/O; involved reactions have been previously
presented (see (1)-(3)). Regarding photocatalytic process, it
starts with the excitation of a semiconductor, giving place
to the generation of hole-electron pairs (see (9)) that are
the precursors for hydroxyl radical formation (see (10)). This
radical species can directly oxidize organic matter (see (5)) or
also form hydrogen peroxide (see (11)) that also decomposes

to hydroxyl radical (see (12)) [24, 30]. Hydroxyl radical
formed by any pathway reacts with organic matter producing
intermediates that could be finally oxidized to carbon dioxide
and water. For EFL treatment, the reactions involved in the
production of hydroxyl radical are given by (13)-(14) [25].
It must be noticed that in this case the hydrogen peroxide
required in (14) is in situ produced. Finally, photo-Fenton
process also requires the generation of hydroxyl radicals and
(15) illustrates this interaction [11]

TiO, + hv — TiO, (e” +h") 9)
TiO,h" + OH ™,y — TiO, + "OH (10)
(HO"), + (HO"), — H,0, + O, (11)

H,0,+e — ‘OH+ OH"~ (12)

Cut+e — Cu’ (13)

Cu' +H,0, — Cu”" +OH +'OH  (14)
H,0, + Fe’" + hy — Fe’* + HO™ + HO" (15)

If one compares the complexities of the hydroxyl radical
production pathway by EO/O;, EFL, PC, and PF, it is clear
that, in EFL and PE radical production is beneficiated by
the continuous regeneration of copper and iron species,
respectively. By coupling EO/O;, the total degradation is
quickly reached and may be ascribed to the different non-
competitive pathways whereby hydroxyl radical is produced.
In contrast, in the photocatalytic process, it is not possible to
control the selectivity of hydroxyl radical to perform direct
oxidation in addition to troubles related to hole-electron pair
recombination.

As a complementary step of the comparison procedure,
TOC analysis was conducted to establish the mineraliza-
tion degree attained by the different methods as well as
energy consumption required to mineralize one gram of total
organic carbon. This parameter was calculated as follows [28]:

Ecelllt

EC(kWhgroe) = ’
(kWhgroc) V (Initial TOC — Final TOC)

(16)

where E_ is voltage applied to the cell, V is electrolyte
volume (L), TOC s total organic carbon (mg L), I'is current
(A), and ¢ is time (h).

Figure 4 shows the results corresponding to mineral-
ization rate and energy consumption on the basis of TOC
removal by every assessed treatment, that is, EO/O;, EFL, PC,
and PE.

Total mineralization was only achieved by the coupled
EO/Oj after 100 min of treatment. In the studied treatment
time, none of the other technologies were able to transform
the whole organic matter to carbon dioxide and water which
is a reminder of the well-known persistence of the 4-CP
by-products generated through AOPs. In Figure 4, it is also
worth noticing that interesting enough the process offering
the less energy consumption is the coupled process EO/O;.
Furthermore, the calculated value suggests the process can
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TaBLE 2: Concentration and retention time of by-products of the phenol oxidation in a EO/O; coupled process.

B Retention time Concentration
y-product .
(min) (ppm)
Benzoquinone 0.961 18
Aromatic by-products after C q hol
10 min of treatment atecho 1228 30
Hydroquinone 4.988 1
Oxalic 2.222 8.5
Formic .
Carboxylic by-products after ] 2638 6
20 min of treatment Maleic 3.121 7
Succinic 3.332 5
Fumaric 3.588 2
TaBLE 3: Calculation of MCE for the 4-CP degradation by electrochemical processes.
TOC,_ TOC,_ t j MCE
P t=0 t=2h J
rocess (mgTOCL™) (mg TOCL™") (h) (mAcm™) (%)
Coupled EO/O, 59.37 0 1.5 30 23
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! o - - 0.1 FIGURE 5: Chromatogram of 4-CP degradation by-products after
o2 o L 0.0 30 min of EFL treatment.
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Advanced oxidation process

FIGURE 4: Mineralization rate of 4-CP molecule and energy con-
sumption by EFL, EO/O;, PC: MgZnAl 5%, and PE Reaction
conditions: EFL (j = 40 mA cm ™% TOC, = 64 ppm); PC (Cg,, =
12kgm™; TOC, = 56ppm); PF (C, = 0.8kgm™>; TOC, =
70 ppm); EO/O; (j = 30 mA cm™; TOC, = 59 ppm).

be conducted aided by solar cells which could considerably
reduce the cost of the process. Also, from Figure 4, it can
be concluded that the cocurrent downflow bubble column
reactor is a promising technology that might be worthy
to asses as electrochemical reactor to conduct the coupled
process (EO/O;) with the additional advantage of reducing
the waste of ozone.

Analogous to phenol degradation, the MCE was deter-
mined for the electrochemical processes (coupled EO/O; and
EFL) according to the following reaction:

CIC¢H,OH + 270H —
17)
6CO, + Cl” + 16H,0 + 26e"

Results about MCE for electrochemical processes are pre-
sented in Table 3.

The efficiency of the coupled process is lower than the
obtained for the EFL which almost reaches 100% of efficiency.
It is worth clarifying that, in the case of EFL, the used current
density to calculate MCE was the one applied to the graphite
electrodes which was one order of magnitude lower than the
one applied to the BDD in the coupled process.

Although by EFL and PF the model molecule was
apparently destroyed (see Figure 3), it was only converted to
smaller compounds that cannot be completely mineralized
by the process and this implies the necessity to perform
a post-treatment to reach a higher mineralization. Study
of the recalcitrant by-products responsible of the partial
mineralization was the final step of this work. This study
was performed only for EFL. The side products of 4-CF
degradation presents after 30 min of treatment were oxalic,
malonic, maleic, succinic, and fumaric acids and Figure 5
exhibits a typical chromatograph in which all of them were
identified at the referred time. Oxalic acid was present
in higher amount and after 120 min was not possible to
mineralize it by EFL. In contrast to phenol degradation, here
only hydroquinone was detected as aromatic intermediate.
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Stability of oxalic acid appears to be the major obstacle to
perform a complete mineralization of a phenolic compound.
Further research in this sense should be conducted. Still, it
is expected that the results presented in this work help to
improve the existing knowledge in degradation processes of
phenolic compounds through different AOPs.

4. Conclusions

Phenol degradation and 4-CP degradation by different
advanced oxidation processes were conducted and compared.
Important differences in efficiency and in energy consump-
tion were found. Among the studied AOPs, the process that
fully mineralizes both phenolic compounds is the coupled
electro-oxidation/ozonation process. By this treatment, 100%
degradation of phenol is achieved in only 60 min while
TOC is removed at a rate of 1.3500lmg TOCL ' min™'. A
complete mineralization is achieved after 100 min. 4-CP is
totally degraded and mineralized also by the coupled method
although the highest TOC removal rate was found with the
photocatalytic process (~1.0 mg TOCL™' min™") performed
at pilot scale. Photo-Fenton with pillared clays was found to
be the less efficient process among the studied ones. In terms
of energy consumption, the coupled process outperforms the
other ones since it exhibited the lowest energy consumption
level. Still, the cocurrent downflow contactor reactor emerges
as a promising technology to conduct advanced oxidation
processes.
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